通过引导学生自主学习的教案,能够培养他们的自学能力与终身学习的意识,通过教案设计中的评估环节,教师可以及时了解学生的学习状态,调整教学策略,52心得网小编今天就为您带来了煤的应用教案5篇,相信一定会对你有所帮助。
煤的应用教案篇1
1.使学生能正确判断应用题中涉及的量成什么比例关系.
2.使学生能利用正、反比例的意义正确解答应用题.
3.培养学生的判断推理能力和分析能力.
教学重点
使学生能正确判断应用题中的数量之间存在什么样的比例关系,并能利用正反比例的意义来列出含有未知数的等式,从而正确利用比例知识解答应用题.
教学难点
利用正反比例的意义正确列出等式.
教学过程
一、复习准备.(课件演示:比例的应用)
(一)判断下面每题中的两种量成什么比例关系?
1.速度一定,路程和时间.
2.路程一定,速度和时间.
3.单价一定,总价和数量.
4.每小时耕地的公顷数一定,耕地的总公顷数和时间.
5.全校学生做操,每行站的人数和站的行数.
(二)引入新课
我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的知识可以解决一些实际问题.这节课我们就来学习比例的应用.
教师板书:比例的应用
二、新授教学.
(一)教学例1(课件演示:比例的应用)
例1.一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时.甲乙两地之间的公路长多少千米?
1.学生利用以前的方法独立解答.
14025
=705
=350(千米)
2.利用比例的知识解答.
(1)思考:这道题中涉及哪三种量?
哪种量是一定的?你是怎样知道的?
行驶的路程和时间成什么比例关系?
教师板书:速度一定,路程和时间成正比例
教师追问:两次行驶的路程和时间的什么相等?
怎么列出等式?
=350
答:两地之间的公路长350千米.
3.怎样检验这道题做得是否正确?
4.变式练习
一辆汽车2小时行驶140千米,甲乙两地之间的公路长350千米,照这样的速度,从甲地到乙地需要行驶多少小时?
(二)教学例2(课件演示:比例的应用)
例2.一辆汽车从甲地开往乙地,每小时行70千米,5小时到达.如果要4小时到达,每小时要行多少千米?
1.学生利用以前的方法独立解答.
7054
=3504
=87.5(千米)
2.那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)
这道题里的路程是一定的,_________和_________成_________比例.
所以两次行驶的_________和_________的_________是相等的.
3.如果设每小时需要行驶
4.变式练习
一辆汽车从甲地开往乙地,每小时行70千米,5小时到达.如果每小时行87.5千米,需要几小时到达?
三、课堂小结.
用比例知识解答应用题的关键,是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程.
四、课堂练习.(课件演示:比例的应用)
(一)食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)
(二)同学们做广播操,每行站20人,正好站18行.如果每行站24人,可以站多少行?
(三)先想一想下面各题中存在着什么比例关系,再填上条件和问题,并用比例知识解答.
1.王师傅要生产一批零件,每小时生产50个,需要4小时完成,_______,_______?
2.王师傅4小时生产了200个零件,照这样计算,_______?
五、课后作业.
1.一台拖拉机2小时耕地1.25公顷,照这样计算,8小时可以耕地多少公顷?
2.用一批纸装订成同样大小的练习本,如果每本18张,可以装订200本.如果每本16张,可以装订多少本?
3.某种型号的钢滚珠,3个重22.5克,现有一些这种型号的滚珠,共重945千克,一共有多少个?
六、板书设计.
教案点评:
本节课通过对正、反比例意义的全面应用,使学生加深了正、反比例意义的认识。
在学生对正、反比例意义理解的基础上,把所获得的理性认识返回到实践中去,从而拉近了数学知识与学生生活实际的距离,减少了学生的陌生感、降低了难度,使学生感到正、反比例关系就在自己的身边。
探究活动
鱼池有多少条鱼?
活动目的
1.培养学生应用所学知识解决实际问题的能力.
2.培养学生的判断推理能力和分析能力.
活动形式
以小组为单位讨论.
煤的应用教案篇2
教学分析:
按比例分配的练习。
学情分析:
已初步了解了按比例分配的应用,将通过练习进一步巩固此类问题的解决方法。
教学目标:
能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力。
教学策略:
练习、反思、总结。
教学准备:
小黑板
教学过程:
一、基本练习
(一)六1班男生和女生的比是3:2
1.男生人数是女生人数的( )
2.女生人数是男生人数的( ),女生人数和男生人数的比是( ).
3.男生人数占全班人数的( ),男生人数和全班人数的比是( ).
4.全班人数是男生人数的( ),全班人数和男生人数的比是( ).
5.女生人数占全班人数的( ),女生人数和全班人数的比是( ).
6.全班人数是女生人数的'( ),全班人数和女生人数的比是( ).
(二)学校有买来小足球和小篮球120个,小足球和小篮球个数的比是3比5。学校买来小足球和小篮球各多少个?
把250按2比3分配,部分数各是多少
二、变式练习
1、被减数是36,减数与差的比是4比5,减数是多少?差是多少?
2、有一种药水,按药液与水的比为1比5000配制而成。用这样的药液0.5千克,可配制这样的药水多少千克?
教学反思:
提高练习的灵活度,以及练习的形式。
煤的应用教案篇3
设计说明
1.创设问题情境,体会数学的应用价值。
以实际生活中的问题情境导入新课,有利于激发学生的学习兴趣,便于学生掌握新知。以铺地砖的实际问题为切入点,要铺边长为整分米数的地砖而且要求是整块数,引出求两个数的公因数的重要性,揭示数学与现实生活的联系,体会数学的应用价值,同时有利于培养学生的分析、推理和抽象概括能力。
2.鼓励自主探究,体会转化的数学思想,经历数学概念的形成过程。
引导学生主动参与学习、掌握学习方法、提高解决问题的能力是教学的最终目的。本设计引导学生通过动手摆一摆、画一画发现可以选择的地砖,然后组织学生围绕这几种可以选择的地砖的边长与长方形地面的长、宽之间的关系展开讨论,使学生在动手操作、讨论交流中经历数学问题转化的过程。
课前准备
教师准备 ppt课件
学生准备 方格纸
教学过程
⊙谈话导入,探究新知
1.导入新课。
师:同学们想不想当设计师?老师在装修房屋时遇到了一个问题,想请同学们帮忙解决。
课件出示教材62页例3情境图。
师:请同学们认真观察情境图,说一说老师遇到了什么难题。
学生汇报。
预设
生1:要给长16 dm、宽12 dm的贮藏室铺地砖。
生2:要用边长是整分米数的正方形地砖把贮藏室的地面铺满。
生3:使用的地砖必须都是整块的。
2.合作探究。
(1)学生分组讨论。
用长方形方格纸代表长16 dm、宽12 dm的贮藏室地面,每个方格可以代表边长是1 dm的正方形。小组讨论一下,正方形地砖的边长可以是几分米呢?(学生操作)
(2)学生组内交流。
①边长是1 dm。
长边、宽边可以分别铺几块呢?能用整块数地砖铺满吗?(长边16块,宽边12块,能铺满)
②边长是2 dm。
长边、宽边可以分别铺几块呢?能用整块数地砖铺满吗?(长边8块,宽边6块,能铺满)
③边长是3 dm。
长边、宽边可以分别铺几块呢?能用整块数地砖铺满吗?(长边5块,宽边4块,不能铺满)
④边长是4 dm。
长边、宽边可以分别铺几块呢?能用整块数地砖铺满吗?(长边4块,宽边3块,能铺满)
……
(3)各组汇报。
生1:我发现只有边长是1 dm、2 dm、4 dm的地砖符合老师的要求。
生2:我认为要使所用的正方形地砖都是整块的,地砖的边长必须是12和16的公因数,也就是1,2,4,所以可以选边长是1 dm、2 dm、4 dm的地砖,边长最大是4 dm。
(4)教师总结:解决这个问题的关键是找出12和16的公因数和最大公因数。
设计意图:在教学中不仅要求学生掌握抽象的数学结论,还应注意培养学生的“发现”意识,引导学生探究知识的形成过程,尽可能挖掘学生的潜能,让学生通过努力自己解决问题。
煤的应用教案篇4
教学目标:使学生对反比例函数和反比 例函数的图象意义加深理解。
教学重点:反比例函数 的应用
教学程序:
一、新授:
1、实例1:(1)用含s的代数式 表示p,p是 s的反比例函数吗?为什么?
答:p=600s (s0),p 是s的反比例函数。
(2)、当木板面积为0.2 m2时,压强是多少?
答:p=3000pa
(3)、如果要求压强不超过6000pa,木板的面积至少 要多少?
答:至少0.lm2。
(4)、在直角坐标系中,作出相应的函数 图象。
(5)、请利用图象(2)和(3)作出直观 解释,并与同伴进行交流。
二、做一做
1、(1)蓄电池的电 压为定值,使用此电源时,电流i(a)与电阻r()之间的函数关系如图5-8 所示。
(2)蓄电池的电压是多少?你以写出这一函数的.表达式吗?
电压u=36v , i=60k
2、完成下表,并 回答问题,如果以蓄电池为电源的用电器限制电流不得超过10a,那么用电器的可变电阻应控制在什么范围内?
r() 3 4 5 6 7 8 9 10
i(a )
3、如图5-9,正比例函数y=k1x的图象与反比例函数y=60k 的图象相交于a、b两点,其中点a的坐标为(3 ,23 )
(1)分别写出这两个函 数的表达式;
(2)你能求出点b的坐标吗?你是怎样求的?与同伴进行交流;
随堂练习:
p145~146 1、2、3、4、5
作业:p146 习题5.4 1、2
煤的应用教案篇5
教材分材:
教材通过介绍某实验田普通水稻与杂交水稻的产量,引出“增产百分之几”的实际问题。通过男孩提出“增产百分之几是什么意思”,引导学生分析数量关系,再一次体会百分数的意义。教材中的算一算提供了两种不同的解答方法,这样安排,开拓学生的思路,发展学生思维的灵活性。
教师可以引导学生画线段图理解。学生明确了“增产百分之几”的意思后,就可以让学生独立解答。需要注意的是,教学时要鼓励学生根据实际问题中的数量关系和增产百分之几的意义解决问题,而不是依靠记忆题型和套用方法来解决问题。
二、学生分析
在此学习内容之前,学生已经学习了百分数的定义和读写、百分数和分数、小数的互化、百分数的简单应用、运用方程解决简单的百分数问题。在此基础上,进一步学习百分数的应用。
教学目标:
1、在具体情景中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。
2、能解决有关“增加百分之几”或“减少百分之几”的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。
教学过程
一、导入
线段图是把握数量关系的重要方法之??
你能用线段图表示下面的数量关系吗?
在学校开展的第二课堂活动中,参加围棋班的有32人,参加航模班的人数比参加围棋班的多25%
学生独立完成线段图
展示学生成果
3、教师对学生的作品进行评价
引导学生分析数量关系,再一次体会百分数的意义。
从复习中引导学生分析数量关系。
二、百分数的应用
1、 出示教科书p23上面的问题
2、 思考:“增产百分之几”是什么意思?
学生自由发表自己的见解,教师评价。
杂交水稻比普通水稻增加的.产量是普通水稻产量的百分之几
学生独立解答问题,通过介绍某实验田普通水稻与杂交的产量,引出“增产百分之几”的实际问题。
3、 班内交流
方法一: 7 - 5.6 = 1.4(吨)
1.4 ÷ 5.6
= 0.25
= 25%
方法二: 7 ÷ 5.6
= 1.25
= 125%
125% - 100% = 25%
引导学生用两种不同的方法解答,开拓学生的思路,发展学生思维的灵活性。
三、试一试
1、出示教科书p23下面的问题
2、“几成”是什么意思?
成数主要用于农业收成
几成就是十分之几。
一成就是1/10 ,也就是10%
二成五就是2.5%,也就是25%
重点理解“几成”的意思。让学生独立完成再交流,发展学生的思维。
3、学生独立解决问题
(2.61 - 2.25) ÷ 2.25
= 0.36 ÷ 2.25
= 0.16
= 16%
四、练一练
1、教科书p24练一练第1题
2、科书p24练一练第2题
3、教科书p24练一练第3题
五、课堂总结
通过今天的学习你有什么收获?
教学反思:
整节课教学完成之后,可以说自己感触很深。这节课是百分数的具体应用。进一步提高学生运用百分数解决问题的能力,综观整个课堂,由于学生在课前调查收集的资料准备充分,所以在导入环节,学生兴趣浓厚,气氛较好。